
The Grader: Student Guide
Manoj Thulasidas

Abstract—Grader is designed to make the logistical part of
grading the WAD lab tests as seamless as possible. It can validate
the files uploaded by the students, display the files, help grade
with rubrics displayed, attach comments to graded files and much
more. Since you are a student, you will not actually be grading
anybody. You can, however, see the Grader in action using the
included sample files. You can also look at the Quick Start Guide
(Grader-QuikStart.pdf) to see how an instructor would use it. For
much more details on the design and usage of the Grader, please
refer to the conference paper (Grader.pdf), presented at EDUCON
2024 in Greece in May, 2024. Keep in mind, however, that what
is described in the paper is an earlier version.

I. QUICK START

1) Unzip Grader.zip to your Document Root DR.
2) Open localhost/Grader/index.php in your browser and

follow the online documentation.

II. LEARNING POINTS

Grader is a fairly large web application, with a codebase
of about 8,500 lines of PHP (a quarter of which are prob-
ably comments, for your benefit), in addition to some SQL,
JavaScript and CSS code. The file Grader-Reference.pdf is
a fully-cross-referenced source-code documentation generated
using DoxyGen. It also contains the whole codebase. Study
the UML diagram in Fig. 1 (which is also included as
Grader-UML.png) to understand the various classes and how
they work with and depend on one another.

Most of the ideas in the Grader package are from what we
learned in IS113. However, it does use a couple of object-
oriented features that we have not covered.

• Inheritance: In OOP, we can have a Base class and a
Derived class. The (public and protected) properties and
methods in the Base class also available to the Derived

class. Inheritance helps us avoid repeating code.
• Access Modifier protected: The Base class methods or

properties with visibility protected are accessible to the
Derived class, while the private ones are not. In this
sense, protected is “in between” the private and public

visibilities. Read more about it here: https://stackoverflow.
com/q/8353272

• Declaration static: Properties or methods that are de-
clared static exist only on a per-class basis (as opposed to
per-object). They are similar to the class constants that we
learned about in the course. We access them using self::

(or static::), but not $this->. Since they are available
without instantiating the object, we cannot use $this in
static methods. Remember that self (or static) stands for
the class, while $this stands for an object instantiated from

the class. More info here: https://www.php.net/manual/en/
language.oop5.static.php

• Late Static Binding: This new feature of PHP is a bit
harder to explain. Here is some info: https://stackoverflow.
com/q/1912902. I (or rather, ChatGPT) will explain it
further as a section below. As you will see, Grader uses
this feature quite extensively to perform its magic when it
comes to creating the landing HTML pages.

• self:: vs static::: The distinction between these two key-
words becomes significant when using late static binding,
as explained below. https://stackoverflow.com/a/64072873

• HTML Stuff: Grader also uses iframes (with dynamically
generated source), some JavaScript for automation and
some styling. It also uses syntax highlighting from a
publicly available package.

III. DETAILED EXPLANATIONS (FROM CHATGPT)
A. Understanding Inheritance in PHP

Inheritance in PHP is a fundamental concept of object-
oriented programming that allows classes to inherit properties
and methods from other classes. This feature facilitates code
reuse and the organization of code into hierarchical structures.

1) Defining Classes and Inheritance: To define a class in
PHP, you use the class keyword. Inheritance is implemented
using the extends keyword, indicating that one class (the child
or subclass) will inherit from another class (the parent or
superclass).

1 <?php

2 class Vehicle {

3 public $brand;

4

5 public function setBrand($brand) {

6 $this->brand = $brand;

7 }

8

9 public function getBrand() {

10 return $this->brand;

11 }

12 }

13

14 class Car extends Vehicle {

15 private $model;

16

17 public function setModel($model) {

18 $this->model = $model;

19 }

20

21 public function getModel() {

22 return $this->model;

23 }

24 }

https://stackoverflow.com/q/8353272
https://stackoverflow.com/q/8353272
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://stackoverflow.com/q/1912902
https://stackoverflow.com/q/1912902
https://stackoverflow.com/a/64072873

2) Access Modifiers: PHP supports three access modifiers:

• Public: Accessible from anywhere.
• Protected: Accessible within the class itself, by classes

that extend it, and parent classes.
• Private: Accessible only within the class it is defined.

3) Overriding Methods: Subclasses in PHP can override
methods of their superclasses. This allows the subclass to
provide its own implementation of a method that is already
defined in its superclass.

1 <?php

2 class Vehicle {

3 public function startEngine() {

4 echo "Engine started";

5 }

6 }

7

8 class ElectricCar extends Vehicle {

9 public function startEngine() {

10 echo "Electric engine started silently";

11 }

12 }

4) The parent Keyword: The parent keyword is used to
call methods or access properties of the parent class.

1 <?php

2 class Vehicle {

3 public function startEngine() {

4 echo "Engine started";

5 }

6 }

7

8 class ElectricCar extends Vehicle {

9 public function startEngine() {

10 parent::startEngine(); // Calls the

parent method

11 echo " with an electric boost";

12 }

13 }

Inheritance in PHP allows for the creation of a class hierar-
chy that enhances code reuse and organization. By leveraging
inheritance along with access modifiers, method overriding,
and the parent keyword, developers can write more modular,
maintainable, and flexible PHP code.

B. Understanding Late Static Binding in PHP

Late static binding in PHP is a feature that allows the resolu-
tion of static method or property calls to the class that was last
non-statically called in the hierarchy. This is particularly useful
in object-oriented programming when dealing with inheritance
and static method overrides, enabling more dynamic behavior.

Late static binding allows for referencing the called class in
a context of static inheritance. Typically, when a static method
in PHP is called using the self keyword, it refers to the class in
which the method is defined. However, with late static binding,

using the static keyword instead of self will resolve to the
class that originally made the call, even within a parent class.

This feature addresses the limitations of early binding,
which binds static method calls to the class where a method
is defined at compile time. Late static binding defers this
resolution to runtime, thus allowing a static method to know
which class it was called on.

Here’s an example illustrating late static binding:

1 <?php

2 class A {

3 public static function who() {

4 echo __CLASS__;

5 }

6

7 public static function test() {

8 self::who(); // Early Binding

9 static::who(); // Late Static Binding

10 }

11 }

12

13 class B extends A {

14 public static function who() {

15 echo __CLASS__;

16 }

17 }

18

19 B::test(); // Outputs: AB

In this example, calling B::test() outputs ‘AB‘, demonstrating
the difference between early binding (self::who()) and late
static binding (static::who()). Late static binding correctly
identifies the call as being made from class B, despite the
method being called within the parent class A.

C. Understanding Code through UML Class Diagrams

UML class diagrams are a fundamental tool in object-
oriented programming for visualizing the structure of a sys-
tem’s classes, their attributes, methods, and the relationships
between classes. Here is how class diagrams can be used to
enhance the understanding of code.

1) Visualization of Class Hierarchy and Relationships:
Class diagrams provide a clear visual representation of the
class hierarchy, illustrating inheritance between classes, which
is invaluable for understanding the object-oriented design of a
system.

• Inheritance: Class diagrams show inheritance relation-
ships, making it easier to see how classes are derived from
one another and how they share or override functionality.

• Association: These diagrams also detail how classes in-
teract with each other through associations, including ag-
gregation and composition relationships, providing insight
into the system’s architecture.

2) Attributes and Methods: By visualizing class attributes
and methods, class diagrams offer a comprehensive overview
of what each class does, what information it contains, and how
it behaves.

Fig. 1: The Unified Modeling Language (UML) class diagram of the Grader application, showing their methods, properties
and hierarchies. Note that # stands for protected visibility. This Figure is also included as Grader-UML.png in the package.

• Attributes: Seeing the data each class holds can help
developers understand the role of each class within the
system.

• Methods: The operations available in each class and their
visibility (public, private, protected) are also depicted,
offering insights into the class’s functionality and how it
interacts with other classes.

3) Facilitates Code Analysis and Design: Class diagrams
serve as a blueprint for the system, making it easier to analyze
and design software by:

• Identifying Redundant Classes and Operations: Reduc-
ing complexity by highlighting opportunities to refactor or

consolidate class functionality.
• Spotting Missing Relationships: Ensuring that all neces-

sary interactions between classes are accounted for in the
system’s design.

4) Improves Communication: UML class diagrams improve
communication among developers by providing a common
language for discussing the system’s design, facilitating more
effective collaboration.

UML class diagrams are a powerful tool for understanding
the structure and behavior of software systems. They help in
visualizing the system’s architecture, simplifying the analysis,
design, and documentation of software projects.

	Quick Start
	Learning Points
	Detailed Explanations (from ChatGPT)
	Understanding Inheritance in PHP
	Defining Classes and Inheritance
	Access Modifiers
	Overriding Methods
	The parent Keyword

	Understanding Late Static Binding in PHP
	Understanding Code through UML Class Diagrams
	Visualization of Class Hierarchy and Relationships
	Attributes and Methods
	Facilitates Code Analysis and Design
	Improves Communication

