
The Grader: A Grading Assistant for Lab Tests and
a Teaching Tool

Anonymous Authors
Anonymous Organization

Abstract—This article presents the design and implementation
of the Grader, a grading assistant application deployed for a
Web Application Development course at our school. The Grader
is equipped to handle various logistical aspects of lab tests, includ-
ing file management, consistent application of rubrics, and auto-
grading of questions with test cases. Additionally, it incorporates
heuristic rules to detect cheating attempts. We anticipate that
the Grader will find widespread utility in programming courses
where lab tests serve as summative assessments. Developed
within the same programming environment taught in the class,
the Grader also serves as a pedagogical tool, demonstrating
to students a substantial project that utilizes the techniques
learned in the classroom. This article describes the features of
the Grader, the context of the course where it is deployed, and
our experience and insights in using it. In particular, we will
present the comments from the students gathered from their
qualitative feedback on the course and the instructor as the utility
of the Grader in enhancing their learning experience. We will
also present the estimates of the time saved by the instructors
in evaluating lab tests. From the data collected, we conclude
that the Grader can serve as a pedagogical too to motivate
our students. Further, the Grader can significantly reduce the
demand on the instructors time in grading lab tests. In terms of
detecting plagiarism, its performance is not fully established.

Index Terms—grading assistant, programming courses, lab
tests, web application development, automatic grading

I. INTRODUCTION

Lab tests are a commonly used assessment technique for
programming courses [1], [2]. They focus on evaluating a
student’s programming skills and understanding of the course
material through hands-on exercises. One programming course
that has become an integral part of the undergraduate curricu-
lum of information systems is Web Application Development
(WAD) [3]–[5]. In our school, we offer the first of two courses
in WAD to our freshmen-year, second-term students. The
course also introduces them to object-oriented methodologies.
As is common with courses dealing with programming lan-
guages, we have lab tests as part of its summative assessment.

When compared to other modes of testing (such as online,
e-learning mode, or the traditional hard-copy mode), lab tests
present their own challenges when it comes to grading, related
to file management and grading-data handling. In order to
tackle such challenges, we developed a tool, which is presented
in this paper. We will refer to the grading tool as the “Grader.”

In addition to helping the instructors with the logistics of
grading, the development of the Grader is also an opportunity
to introduce our students to a real-world application using the
technologies they are taught in class. It has the added attraction
of dealing with an issue close to their hearts, namely their

grades, and exposes them to some of the more advanced ideas
in object-oriented approach.

Lastly, since the Grader stores all the student submissions
in a database, we can perform deep analysis on their answers
to detect cheating attempts. This is especially important in lab
tests because students have access to their computers during
the tests. Although they are warned not to connect to the
network, nor attempt to use any messaging applications, we
can never be certain about their academic integrity despite
our stringent invigilation. Manual detection, therefore, is our
last line of defense against cheating attempts. The Grader
can make this process by automating several of the pairwise
comparisons of student answer books. Currently implemented
using a heuristic algorithm, the cheating detection can easily
be extended using text analytics and techniques specifically
tailored for source code plagiarism [6] such as JPlag, MOSS
etc.

In this paper, we seek to answer the following questions
using primarily qualitative data such as student comments and
instructor feedback:

• RQ1: Can we reduce the time demand on instructors in
grading lab tests using automation?

• RQ2: Can we motivate students of programming courses
by presenting a real-world application?

• RQ3: How well can heuristic comparisons discourage and
detect plagiarism in lab tests?

This article is organized as follows: We begin by examining
the related work in the areas of web application development
courses, lab exams in programming courses, and grading
assistants. Additionally, we explore the current state of heuris-
tic plagiarism detection and automated grading techniques.
Next, we present contextual information about our specific
course, including details about the lab tests conducted and
the demographics of the students involved. Subsequently, we
delve into the design goals of the Grader and the features
implemented. Furthermore, we share our experience with the
Grader, discussing its effectiveness and usability. We also
outline our future plans and potential enhancements for the
application. Finally, we conclude the article, summarizing the
key findings and insights gained from our use of the Grader in
the assessment of lab exams for web application development
courses.



II. RELATED WORK

Over the past few decades, Web Application Development
(WAD) has emerged as a fundamental component of under-
graduate information systems and computer science education.
Extensive research has been conducted to emphasize the im-
portance, relevance, and challenges associated with WAD [7],
[8]. Since WAD courses, particularly within information sys-
tems departments, primarily focus on programming [9], they
share many pedagogical and assessment techniques with pro-
gramming language courses [10]. One prominent technique
used for summative assessment in programming courses is the
lab test [1].

As enrollment in information systems and computer science
programs continues to rise, the demand for testing, assessing,
and grading students also increases. Automatic grading for
programming courses has garnered significant attention in
the literature. A recent survey by Paiva et al. [11] explores
the current state of the art, highlighting the challenges and
opportunities in this area. Various articles propose automated
and language-agnostic testing frameworks for formative as-
sessments [12], [13]. In a different study, Cohenour et al. [14]
employed MATLAB as a grading tool, utilizing ActiveX Com
controls to provide feedback messages via email, making
it suitable for formative assessment, albeit limited to the
Windows operating system.

Moving beyond traditional programming courses, there have
been endeavors to automate grading assignments and tests
in spreadsheet-based courses [15]. These initiatives primarily
focus on formative assessments and describe frameworks that
enable instructors proficient in Excel and VBA to develop
automatic graders. Thulasidas [16] discusses an iterative ap-
proach for building and applying grading rubrics in summative
assessments. In their comprehensive study, Weegar et al. [17]
explore techniques for automating the grading of short-answer
questions and argue that a fully automated grading solution
remains elusive. While the Grader application presented in
this article incorporates auto-grading functionality, its primary
objective is to assist instructors in consistently applying grad-
ing rubrics and managing grading logistics, including file
management and score tracking.

Ensuring academic integrity in tests and assessments is
always a concern, and traditional methods often rely on strict
invigilation. However, this approach becomes unreliable in the
case of lab tests as students have access to their laptops and
network connectivity for at least part of the exam duration.
While some studies [18] suggest that instances of academic
dishonesty are not more prevalent online than in traditional
settings, it remains the responsibility of instructors to ensure
integrity and fairness. Cluskey et al. [19] proposed eight
control procedures for online examinations, which were not
directly applicable to our summative assessments based on lab
tests because they were primarily aimed at minimizing proc-
toring costs. Another approach, suggested by McHaney [20],
is to foster an awareness and culture of academic integrity.
Additionally, research has explored video monitoring as a

means of migrating the traditional monitoring strategy to the
online world [21].

Another strategy for detecting cheating attempts is to fo-
cus on student submissions and compare them using either
machine learning techniques [22] or heuristic rules, which is
the approach employed in the Grader application. Alterna-
tive approaches include personalizing questions so that each
student receives a unique version [23], as well as integrated
systems [13], [24] that handle all aspects of assignments and
tests, from conception to administration and grading. The
approach adapted in the Grader is different from what is seen
in the literature. It limits its scope to helping instructors the
grading chores, and flagging potential cheating attempts.

III. COURSE AND CONTEXT

A. Web Application Development

Our courses on Web Application Development (WAD) are
designed to teach students the necessary skills and knowledge
to develop dynamic and interactive websites and web-based
applications. Offered over two successive terms, they focus
on the principles, tools, and technologies used in building
web applications and provides hands-on experience in creating
functional and user-friendly web-based systems.

The grading tool described in this article is developed for
the first of the two WAD courses, which we will refer to as
WAD1. In this course, students learn the following:

1) Web Technologies: Students are introduced to HTML
(Hypertext Markup Language), including tables and forms
and their basic styling.

2) Backend Development: Students learn PHP as a server-
side programming language, enabling the development of
the server-side logic that handles form and data processing,
and business logic for web applications.

3) Database Integration: Our students concurrently learn
SQL (Structured Query Language) in a different course.
In WAD, they learn how to integrate databases into web
applications.

4) Object-Oriented Programming: In addition to WAD-
specific topics, our students also get their first exposure
to object-oriented programming in WAD1.

Throughout the course, our students solve in-class exercises
(ICE) to apply the concepts and skills they have learned. We
use WampServer on Windows and MAMP on MacOS for them
to work on ICE. They install these packages on their laptop
and launch the Web and MySQL servers on localhost. They
develop their code using the popular Visual Studio Code editor
and use their personal laptops to run them. By the end of
the course, students have a solid understanding of how the
web works, and are familiar with web-development principles.
They also possess the basic skills needed to continue learning
and adapting to new web technologies as they evolve.

More advanced topics such as frontend development
(Javascript frameworks, CSS styling), web application archi-
tecture (MVC or RESTful APIs), project management, testing,



TABLE I: Contextual Information of the Cohort

Cohort Year First Year
Number of Students 176
Number of Sections 4
Students per Section 44, 43, 44, 45
Male:Female Ratio 125:51
Delivery Mode Face-to-face

deployment etc. are taught in the second course in WAD as
well as in other courses offered by our school.

B. Contextual Information

The first part of our two WAD courses is offered to the
first-year, second-term undergraduate students in information
systems, with the second part offered in the following term.
Our students are already exposed to basic programming in
Python before taking WAD1. In addition, they take a course
on database management concurrently with WAD1. As is com-
mon in STEM programs, our cohort is predominantly male.
The details of the cohort (where the Grader was deployed)
are tabulated in Table I. Our e-learning platform is based on
Brightspace [25], and we will refer to it as eLearn in this
article.

C. Lab Tests

For our WAD1 course, we have two lab tests, where students
are provided with specific programming tasks and problems to
solve within a given time frame. These tasks are designed to
assess the students’ ability to apply the programming concepts,
algorithms, data structures, and problem-solving techniques
they have learned during the course.

The scores obtained in lab tests are used to assess a student’s
performance and understanding of the programming concepts
taught in the course. They contribute to the overall evaluation
of a student’s progress and are combined with other assessment
components, such as quizzes and exams, to determine the final
course grade. The lab test components carry 50% weightage
in the overall assessment of this WAD1 course.

In order to get them started with the lab tests, we provide
the students with the templates or skeleton solutions that we
call the “Resources.” The students are expected to complete
the resource files and upload them to our e-learning platform.
Each lab test may have 10 to 20 resource files. The provision
of the Resources helps standardize the files submitted by the
students as well.

For grading, the instructors have the completed versions of
Resources, which we will call the “Solutions.” Each student
will submit their own updated versions of the Resources,
which we will refer to as “Answers” in this article. The process
of grading essentially is in comparing the Answers with the
Solutions, and assigning scores with the use of rubrics.

D. Rubrics and Automated Grading

In our lab tests for WAD1, we have questions of different
degrees of difficulties. While most of the questions are graded

TABLE II: Workflow of the Lab Tests for our WAD courses

No. Step

1

Design the questions and sub-questions for the test. Create the
Resources (the skeleton solutions that the students will
modify) and the Solutions (the reference solutions the
instructors will use for grading).

2
Prepare grade book on the e-learning platform (which we will
refer to as eLearn) by creating the grade items per
sub-questions and questions in the lab test.

3 Download the empty grade books as CSV templates for future
upload back to eLearn.

4 Prepare the rubrics. Typically, each sub-question will have a
set of rubrics as scoring guides.

5 Prepare the test cases for questions that are to be auto-graded.

6

Administer the lab tests.
• The students download the Resources.
• They then turn off their WiFi connection.
• They complete the files as per the instructions and

requirements of the questions.
• After the test, they create a Zip archive of their edited

versions of the Resources.
• They turn on their WiFi and upload the Answers (as one

Zip file) to eLearn.

7 Download the student Answers as Zip archives.

8
Unpack and validate the Answers. If some of the archives are
invalid, it needs to be addressed quickly so that the students
can rectify the issue.

9 Grade the Answers by comparing each file to the
corresponding Solution and applying the rubrics.

10 Generate and examine grading statistics. If the score
distributions are not as expected, regrading may be necessary.

11
Detect cheating attempts, if possible, by comparing student
Answers. In practice, this step becomes too onerous to
implement.

12 Prepare CSV files and upload scores to eLearn.

manually by the instructors, about 30% of the lab test is graded
automatically using automated test cases and scripts. They
work by running the student’s code against a set of predefined
test cases and evaluating the correctness and functionality of
students’ code based on whether it produces the expected
outputs or exhibits the desired behavior.

As is common among instructors, we also have rubrics
and scoring guides that define evaluation criteria and provide
clear guidelines for grading our lab tests. They establish a
framework that outlines the expectations and standards for
students’ work, making the grading process as consistent and
transparent as possible.

E. Grading Challenges

Although consistent use of rubrics can assist the assessment,
lab tests typically come with set of challenges from the
perspective of the instructors grading them.

1) One of the challenges of grading a lab test is the necessity
to keep track of multiple files per student. While techni-
cally not complicated, in practice, the existence of a large
number of files with identical names becomes a logistical
nightmare.



SMU Classification: Restricted

0

1

2

4

3

5

Fig. 1: The menu structure of the Grader application. (0) is the welcome page, showing the buttons arranged in the logical
sequence of a typical grading workflow. Clicking on each button brings up another page with its own menu to complete the
corresponding task, each of which has help (Quick Info) button and navigation buttons to next/previous task.

2) Often, the instructors may have to debug the submitted files
so that they can run and produce some output without any
fatal errors. The need to keep track of the debugged ver-
sions of the file exacerbates the already difficult logistical
challenge.

3) The data entry requirement of the scores also is taxing.
For each question, and on a per-student basis (often on
a per-file basis), instructors have to enter scores after
aggregating over the rubrics of the question. Although
we try to minimize the effort needed by designing clever
spreadsheets, we still waste significant time and effort on
this aspect of grading.

4) Another challenge is in the format and content of the
uploaded files. We require the students to upload a Zip
archive of their edited versions of the Resource files. We
expect to see a resources folder as the root of the archive.
But often, students creates archives out of the parent folder
(or parent’s parent, or even several levels above), requiring
us to standardize their submissions.

5) We also have students submitting empty archives of the
shortcut or alias of the Resource files, which may make it
necessary to accept their emailed files well after the official
deadline for the submission.

6) Since the files are soft copies that can be shared despite
our careful invigilation, the detection of cheating attempts
also becomes a daunting challenge while grading.

Considering each of these challenges as an opportunity to
innovate, we designed the Grader explicitly to address them,
as we will describe in the following sections.

F. The Lab Test Workflow

Since the Grader application is designed to assist the grading
steps of our lab tests, it is necessary describe the workflow in
administering and grading our lab tests for WAD. For each of
the two lab tests we have for WAD1, we have the sequence of
steps as shown in Table II. The Grader helps with the items
after the administration of the tests, namely steps 7 through 12.
The items in the workflow are likely to be similar in the lab
tests of other programming courses, and the Grader application
may be deployed for them as well.

IV. THE GRADER APPLICATION

Over the course of its development, the Grader has grown
into a mature web application. Although we will not describe
its architecture, we will go through the features of this menu-
driven application in some detail.

The Grader follows a menu system using buttons, as shown
in Fig. 1. When it is launched (typically as a web application
running on the localhost), it displays the menu labelled (0) in
Fig. 1. On this page, instructors click the buttons roughly from
left to right to complete their grading workflow. Each button
brings up another page with a set of action buttons labelled
(1) through (5) in Fig. 1. In the following description, we will
go through these features and the tasks that the Grader can
handle.

A. Grader Configuration

Before launching the Grader, it is necessary to configure it.
The configuration is driven by a single php file (config.php),
as is common with most large-scale web applications. In ad-
dition to editing this configuration file, we have to specify the



SMU Classification: Restricted

Fig. 2: Viewing the configuration file and validating it.

questions, subquestions, rubrics, the Resources and Solutions
so that we can populate the respective database tables.

Based on the principle of single source of truth (whereby
we enter information only once, in one system), we follow the
steps below to configure the Grader:

1) Place the reference files (from Table II, steps 1) in a loca-
tion accessible by the Grader and specify it in config.php.

2) Place the grade book files (Table II, steps 2 and 3) and in
a location and specify it in config.php.

3) Create the rubrics file rubrics.csv by hand, (Table II, step
4) and specify its location in config.php.

4) Specify the question to be auto-graded and the test cases
(Table II, step 5), also in config.php.

5) After the lab test, download the student Answers as Zip
archives (Table II, step 7) in a location and specify it in
config.php.

Once these configuration steps are done, we can use the
Grader to handle the rest of the workflow items (Table II, steps
8 to 12). We do that by following the menu system (Fig. 1)
as described below:
(1) Setup and Validate: This first step helps read and vali-
date the configuration file. It also has actions to set up the
database tables and prepare the Grader for further processing.
The buttons in this menu are shown in Fig. 1, labelled (1) and
perform the following tasks:
View Configuration: View (not edit) the current settings in the

config.php file, as shown in Fig. 2.
Validate Config and Folders: Validate the configuration in

config.php file and check for the existence an contents of
the folders and files specified. (See Fig. 2.)

View SQL File: Examine the SQL file that will be run to
set up the database. It should not be edited because it is
generated based on config.php and a template.

Setup Database: Run the generated SQL file to set up the
database. Clicking the button multiple times is harmless; it
does not reset the database.

Drop Database: Drop all database tables and restart: This
button will really reset the database. If we have graded some
students, all the entered grades will disappear. The database
operations are shown in Fig. 3.

(2) Process Submissions, Rubrics etc.: In the second step,
we populate the database tables by importing rubrics.csv

and the grade books downloaded from eLearn to create and
populate the database tables questions, subquestions and
students tables. The interface is shown in Fig. 1, labelled
(2), with the following buttons:
Exam Details: Displays (as in Fig. 4) the lab test information,

as imported from the grade books.
Process Everything! A shortcut to do what the next three

buttons do.
Questions and Rubrics: Import grade books (CSV files down-

loaded from eLearn) and rubrics.csv to create questions,
subquestions, and their rubrics in the database.

Resources and Solutions: Process the Resource and Solution
files into the database.

Submissions: Import student submissions to create Answers
and prepare for grading. The Grader will verify that students
have submitted valid zip files, and produce color-coded
status messages per student and a summary for the cohort,
as shown in Fig. 5.

Delete Submissions: Delete the uncompressed answer files
that the student have submitted. It does not delete the zip
files downloaded from eLearn.

(3) Grade Students: The next phase is to grade the students.
Clicking on this button will make the process as painless as
possible by providing a page with the following action buttons
(as shown in Fig. 1, labelled (3)).
Load Student List: Load the list of students to grade each

one. The list is color-coded to indicate the students who
SMU Classification: Restricted

Fig. 3: Viewing the database schema, importing it and deleting
the tables.



SMU Classification: Restricted

Fig. 4: Viewing exam details.

are absent for the test, being graded or fully graded. Once
loaded, a student can be graded by clicking on their Grade,
Continue or Regrade button, as shown in Fig. 6. Clicking
on this button will bring up the grading window (Fig. 7)
with color coding (green for full marks, yellow for partial
marks and red for zero or penalties). The grading window
also has navigation buttons near the top as well as a button to

SMU Classification: Restricted

Fig. 5: Importing student submissions and validating them.

SMU Classification: Restricted

Fig. 6: List of students with the current grading status indicated
and color-coded, with context-sensitive action buttons.

view the student’s Answer files. Once clicked, it shows the
answer file with an option to insert a grading comment, and
to view its output running on the localhost server (Fig. 8).
Note that the Answer files viewed are always the submitted
ones (from the database), while the output shown is from
the edited ones (from the disk) in case the instructor needs
to make debugging modifications.

View Marks: This button is to display the marks in a nice table
form that will be exported when the Export CSV button is
clicked, as in Fig. 9.

Export Grades (CSV): After the grading process is com-
pleted, student scores are exported to a CSV file (which can
be imported to eLearn with minimal modifications) using
this button. The file names will be Export-{gradebook}.csv
where {gradebook} is the name of the grade book exported
from eLearn. The files will be in the same folder as the
grade book exports, and can be imported back to eLearn.

Auto-Grade: If auto-gradable questions are specified in
config.php, this button will run the test cases for all stu-

SMU Classification: Restricted

Fig. 7: The grading interface.



SMU Classification: Restricted

Fig. 8: Inspecting student Answer file.

SMU Classification: Restricted

Fig. 9: Viewing marks.

dents. It will update the database with the marks computed.
The auto-grader file should output the total marks in some
recognizable form, as specified in auto-grade options in
config.php. The options should also specify the subquestion
name and the rubric name, so that the marks can be inserted
into the database. For those students whose file crashes, the
Grader will put zero in the database, but will display buttons
to view and manually grade the question.

(4) View Grade Statistics: Once the grading process is com-
plete, the next logical step is to study the statistics. The Grader
can compute and display several statistical measures of the
grade distributions using the fourth menu in Fig. 1. As shown
in Fig. 10, the statistics view can be sliced and diced, and
drilled down for further inspection.
Overall: Overall statistics for the whole cohort comprising all

sections.
By Section: Statistics broken down by section.
By Question: Statistics by question, with option to drill down

by section.
By Subquestion: Statistics by subquestion, again with option

to drill down by section.
(5) Investigate: The last step in the Grader (labelled (5) in

SMU Classification: Restricted

Fig. 10: Viewing statistics, showing the option to drill down.

Fig. 1) has some heuristics to detect potential cheating efforts
and inconsistencies (such as missing or wrong emails in
student files as well as the similarities among the Answers
and the Resources or the Solutions).
Load Student List: Load the list of students for in-depth anal-

ysis for copying/cheating attempts, with buttons for further
investigation, as shown in Fig. 11.

Build Database Tables: The cheating investigation is done by
comparing each submitted file against all other files from
all other students, as described in the following section.
Because of the combinatorial computing requirement, we
create an intermediate database table of similarities. This
(one-time) process can be launched using this button. Al-
though it will take a while, the process can be interrupted
and restarted without losing what is already computed.

B. Investigating Academic Dishonesty

Once the student list is loaded in the Grader application for
investigation, each student will appear in the list as shown in
Fig. 11, near the top. The first button, Prepare, is to perform
the pair-wise similarity scores (if needed). The second button,
Investigate, performs the checks (4) and (5) in the list below,
while the last button, Summary, performs checks (6) and (7).
The heuristic rules that the Grader uses are as follows:

1) Compare the student’s Answer file to the corresponding
Resource file. If identical, the question was not attempted.

2) A large number of student Answers being identical or very
similar to the Solution files may indicate a question leak.

3) Compare each student’s Answer file to the corresponding
file of all other students, and tabulate similarities.

4) In each Answer file, compare the email entered by the
student to the one from which it is submitted. A mismatch
indicates a potential attempt at cheating. (Fig. 11, left.)

5) For each Answer file from one student, find the correspond-
ing file from other students with the largest similarity score.
(Fig. 11, table on the left.)

6) For each student, find the number of times another student
has the largest similarity score. A large frequency indicates
potential collaboration among students. (Fig. 11, table on
the right, middle.)

7) Compare the similarity score between the Answer files
of one student with that of another student. When this
similarity is high (while the similarity between the Answer
and the Resource files is low, indicating that the student
has worked on the file), it indicates cheating attempt also.
(Fig. 11, table on the right, bottom.)

Note that the comparison is done after stripping the obvious
variations (such as white spaces and the lines containing
the student name and email). Quick exact comparisons are
performed using one-way hash functions, while more nuanced
comparison is delegated to PHP string comparison functions.

C. Pedagogical Objective

One hidden agenda we have in developing the Grader is to
present it to the students as a real-world application that they



SMU Classification: Restricted

Fig. 11: Plagiarism detection.

can study and see the concepts they learn in the WAD courses
in action. For this purpose, the Grader is developed using the
same technology stack, namely WampServer and MAMP. We
also use, to the extent possible, the conventions and paradigms
to which the students were introduced.

However, since the WAD1 course is the first time most
of our students come across object-oriented programming,
they are not yet familiar with some of the advanced concepts
like inheritance and polymorphism. In addition, some of the
PHP-specific techniques we use in the development of the
Grader, such as late static binding and dispatch handlers using
magic methods, are not taught in the course. Furthermore,
advanced web concepts such as CSS styling and browser
interactivity with Javascript are also not taught in WAD1.
Although we minimize their use in the Grader development,
we need to employ some of it for usability. For instance,
as seen in Figures 2, 3 and 8, we use syntax highlighting
using a Javascript library. Because of these constraints, in the
current iteration, we merely demonstrated the application in
the classroom. We did not distribute it for their inspection.
It is perhaps more appropriate to have them dissect it in the
second course in the WAD series.

V. EXPERIENCE AND FUTURE DIRECTIONS

The Grader was used in the evaluation of two lab tests
conducted for the WAD1 course during the spring term of
2023, involving a total of 176 students (Table I). The first
question (RQ1) was regarding its utility in terms of reduc-
ing the instructor workload. Its implementation significantly
reduced the grading workload and facilitated the efficient
entry of marks into our e-learning system. Although we did
not conduct a formal analysis to quantify the reduction in
effort, the Grader’s ability to effectively handle files, identify
submission errors, track marks, and detect cheating attempts
validated the development investment. Our estimate of the time
saved, based on anecdotal evidence, is about 50% to 60%.

Our RQ2 was on how effective the Grader application was,
in terms of motivating and inspiring students. In order not to
introduce a bias in our measurement, we did not pose a direct
survey question to the students, which would probably result in
most of the stating that they indeed found it inspiring. Instead,
we relied on their unprompted comments about the Grader in

their general comments about the instructor in their end-of-
term feedback. Out of the 176 students who were exposed
to the Grader, 169 provided feedback and about 10% of them
mentioned the Grader, always in a positive light. Some of these
comments are listed below.

• ". . . I find it even more inspirational because he then later
[sic] shares with the class how he used PHP to automate
grading with a live demo! It was very fascinating and
piqued my interest."

• ". . . hence, the implementations Prof [name removed] has
for his class enabled a much [sic] efficient learning envi-
ronment. . . "

• ". . . he constantly uses his own examples of web design
and application to show us how this can be applied in the
real world contexts."

• ". . . I love his insights and sharing of best practices and
his own practical use cases of whatever we learn. Gives
me motivation whenever I feel like this subject is mean-
ingless."

• l̈dots He also demonstrates how the things we learn in class
can be put to use in real life by building certain websites
with the concepts we were being taught."

From the unprompted comments in the student feedback,
we conclude that the Grader served as a teaching tool, and
consider RQ2 answered in the affirmative.

The third question (RQ3), related to the efficacy of the
Grader in detecting plagiarism could not be answered con-
clusively. Although the heuristic algorithm implemented to
identify instances of academic dishonesty successfully flagged
certain student responses for further investigation, among the
176 students assessed using the Grader, no evidence of cheat-
ing attempts was discovered upon closer manual inspection.

In our context, where lab tests were closely invigilated, the
absence of cheating attempts was not unexpected. However,
should we expand the use of the Grader to take-home assign-
ments, which inherently offer more opportunities for academic
dishonesty, we anticipate a higher likelihood of detecting
such behaviors. Nevertheless, if students intent on engaging
in plagiarism are given ample time, they may find ways to
evade the Grader’s detection mechanisms effortlessly. SThis
could necessitate the implementation of more robust detection



algorithms like Moss, JPlag, or the Plagiarism Detection
System (PDS) for assignments. In any case, based on the data
collected from our deployment of the Grader, we cannot settle
RQ3.

Going forward, we plan to expand the deployment of the
Grader to additional sections of web application development
courses, as well as other programming courses employing
a similar workflow. Furthermore, we intend to leverage the
Grader as a pedagogical tool in WAD courses, utilizing its
capabilities to inspire and motivate students in their learning
journey. We also plan to bolster the plagiarism and cheating
detection using text analytics as well as bespoke techniques
for computer languages and source code.

VI. CONCLUSION

In this article, we presented the Grader, a grading assistant
application employed for assessing lab tests in our web ap-
plication development course. Although numerous tools exist
in literature for automated grading and plagiarism detection,
we have yet to encounter one that streamlines the entire grad-
ing process, encompassing file management, score tracking,
and providing summary statistics. The implementation of the
Grader addresses this gap, providing a comprehensive system
that significantly reduces the grading workload for instructors
evaluating lab tests. It can be utilized in other programming
courses that follow a similar workflow, including submission
to an e-learning platform.

For web application development courses using the MAMP
or WampServer stack, the Grader serves as a valuable peda-
gogical resource, offering students exposure to a substantial
real-life project, encouraging the practical application of their
acquired knowledge. Based on their feedback, students seem
to appreciate this hands-on approach, finding it inspiring.

Moving forward, our future plans involve deploying the
Grader to a larger cohort and exploring its utilization in for-
mative assessments, such as assignments. While its plagiarism
detection feature may require further refinements before using
it for take-home assignments, its notable capabilities of robust
file handling, automated grading, syntax highlighting etc. are
certain to be of use. The Grader application is freely available
from the authors upon request.

REFERENCES

[1] P. Navrat and J. Tvarozek, “Online programming exercises for summa-
tive assessment in university courses,” ACM International Conference
Proceeding Series, vol. 883, pp. 341–348, 06 2014.

[2] E. Riese and O. Bälter, “A qualitative study of experienced course
coordinators’ perspectives on assessment in introductory programming
courses for non-cs majors,” ACM Transactions on Computing Education,
vol. 22, 03 2022.

[3] M. Fabro, E. Almeida, and F. Sluzarski, “Teaching web application
development: A case study in a computer science course,” Informatics
in Education, vol. 11, pp. 29–44, 04 2012.

[4] P. Alston, D. Walsh, and G. Westhead, “Uncovering threshold concepts
in web development: An instructor perspective,” Trans. Comput. Educ.,
vol. 15, pp. 2:1–2:18, 03 2015.

[5] K.-B. Yue and W. Ding, “Design and evolution of an undergraduate
course on web application development,” in Proceedings of the 9th
Annual SIGCSE Conference on Innovation and Technology in Computer
Science Education, ser. ITiCSE ’04. New York, NY, USA: Association
for Computing Machinery, 2004, p. 22–26.

[6] J. Hage and P. Rademaker, “A comparison of
plagiarism detection tools,” 2010. [Online]. Available:
https://api.semanticscholar.org/CorpusID:16448906

[7] T. H. Park and S. Wiedenbeck, “Learning web development: Challenges
at an earlier stage of computing education,” in Proceedings of the
Seventh International Workshop on Computing Education Research, ser.
ICER ’11. New York, NY, USA: Association for Computing Machinery,
2011, p. 125–132.

[8] Y. D. Wang and N. Zahadat, “Teaching web development in the web 2.0
era,” in Proceedings of the 10th ACM Conference on SIG-Information
Technology Education, ser. SIGITE ’09. New York, NY, USA:
Association for Computing Machinery, 2009, p. 80–86.

[9] M. Qadah and S. M. Al-Shomrani, “Teaching web development course
in information system department,” in 2011 3rd International Congress
on Engineering Education (ICEED), 2011, pp. 165–168.

[10] M. Multazam, Z. Syahrial, and R. Rusmono, “Development of learning
models in web programming courses with computer-based learning
tutorials,” Turkish Online Journal of Distance Education, vol. 24, pp.
232–244, 04 2023.

[11] J. Paiva, J. Leal, and A. Figueira, “Automated assessment in computer
science education: A state-of-the-art review,” ACM Transactions on
Computing Education, vol. 22, 02 2022.

[12] N. Strijbol, C. Petegem, R. Maertens, B. Sels, C. Scholliers, D. Peter, and
B. Mesuere, “Tested—an educational testing framework with language-
agnostic test suites for programming exercises,” SoftwareX, vol. 22, p.
101404, 05 2023.

[13] T. Delev and D. Gjorgjevikj, “E-lab: Web based system for automatic
assessment of programming problems,” in ICT Innovations 2012, Web
Proceedings ISSN 1857-7288, 2012, pp. 75–84.

[14] C. Cohenour and A. Hilterbran, “Automated grading of excel workbooks
using matlab,” in Proceedings of the 2016 ASEE Annual Conference and
Exposition, 2016.

[15] B. A. Bertheussen, “Power to business professors: Automatic grading
of problem-solving tasks in a spreadsheet,” Journal of Accounting
Education, vol. 32, no. 1, pp. 76–87, 2014.

[16] M. Thulasidas, “Secure answer book and automatic grading,” in 2020
IEEE International Conference on Teaching, Assessment, and Learning
for Engineering (TALE), 12 2020, pp. 564–569.

[17] R. Weegar and P. Idestam-Almquist, “Reducing workload in short an-
swer grading using machine learning,” International Journal of Artificial
Intelligence in Education, 02 2023.

[18] A. Krsak, “Curbing academic dishonesty in online courses,” in Proceed-
ings of TCC 2007. TCCHawaii, 2007, pp. 159–170.

[19] G. R. Cluskey, C. Ehlen, and M. Raiborn, “Thwarting online exam cheat-
ing without proctor supervision,” Journal of Academic and Business
Ethics, vol. 4, 01 2011.

[20] R. McHaney, T. Cronan, and D. Douglas, “Academic integrity: Infor-
mation systems education perspective,” Journal of Information Systems
Education, vol. 27, pp. 153–158, 01 2016.

[21] C. Ko and C. Cheng, “Secure internet examination system based on
video monitoring,” Internet Research, vol. 14, pp. 48–61, 02 2004.

[22] L. Kong, Z. Han, H. Qi, and Z. LU, “A ranking-based text matching ap-
proach for plagiarism detection,” IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, vol. E101.A,
pp. 799–810, 05 2018.

[23] J. Vykopal, V. Švábenský, P. Seda, and P. Čeleda, “Preventing cheating
in hands-on lab assignments,” in Proceedings of the 53rd ACM Technical
Symposium on Computer Science Education - Volume 1, ser. SIGCSE
2022. New York, NY, USA: Association for Computing Machinery,
2022, p. 78–84.

[24] R. del Pino, E. R. Royo, and Z. J. H. Figueroa, “A virtual programming
lab for moodle with automatic assessment and anti-plagiarism features,”
in Proceedings of the 2012 International Conference on e-Learning e-
Business Enterprise Information Systems & e-Government, 2012.

[25] B. Kurniawan, A. Purnomo, I. Idris, K. Adi, and I. D. Eskasasnanda,
“Using spada brightspace to enhance pedagogical skills in teacher
professional program,” International Journal of Emerging Technologies
in Learning (iJET), vol. 15, p. 180, 04 2020.


